2002 Vol. 4, No. 16 2711–2714

Structure Revision of Medermycin/ Lactoquinomycin A and of Related C-8 Glycosylated Naphthoquinones

Pierre-Marc Léo, Christophe Morin,* and Christian Philouze

LEDSS, UMR-CNRS No. 5616, Département de Chimie, Université Joseph Fourier-Grenoble 1, 38402 Saint Martin d'Hères, France

christophe.morin@ujf-grenoble.fr

Received May 21, 2002

ABSTRACT

CHO CHO OH
$$\frac{5}{4}$$
 $\frac{1}{4}$ $\frac{1$

On the basis of chemical and spectral data, the structure of the medermycin/lactoquinomycin A has been revised, which has also led to the revision of related *C*-glycosylated naphthoquinone antibiotics such as lactoquinomycin B, menoxymycins A and B, G15-F, and G15-G.

Some 25 years ago, scientists at Kayaku isolated from chromogenic Streptomyces tanashinensis orange crystals which they found to be significantly active against grampositive organisms including antibiotic-resistant strains of Staphylococci; the molecular formula C₂₄H₂₉NO₈, deduced from mass spectrometric studies of acetylated derivatives, was given to this material named medermycin. Subsequently this molecular formula was revised to C₂₄H₂₇NO₈ after field desorption studies of the parent material.² Ten years later, the group of Tanaka isolated from the same source "a novel anticancer antibiotic" that they named lactoquinomycin A as, on the basis of physical stability and antitumor properties, they thought it was different from medermycin.³ Its structure was proposed as 1,4 in particular according to ¹H NMR comparison of the naphthoquinone part with that of kalafungin,⁵ and the point of attachment of D-angolosamine (its carbohydrate component) to the naphthoquinone ring was

Subsequently, to help in securing structural identification of these antibiotics, Tatsuta *et al.* performed a total synthesis of 1,8 based on the structure proposed for lactoquinomycin A.³ This enabled a comparison of natural samples of both medermycin (from Omura's group) and lactoquinomycin A (from Tanaka's group) with the synthetic material. Quite unexpectedly, all three samples were found to be *identical*; as a consequence, structure 1 was assigned to both antibiotics. This work was followed by the synthesis of the (—)-enantiomer.⁹ Given the significant antineoplastic, antibiotic, and platelet aggregation inhibition properties of medermycin/

chosen as C-8 after spectroscopic considerations. At about that time, the first production of hybrid antibiotics by genetic engineering was announced⁶ and was applied to isochromanequinone-producing *Streptomyces* strains; the structures of mederrhodin A and B thus produced relied on that previously established for medermycin.⁷

⁽¹⁾ Takano, S.; Hasuda, K.; Ito, A.; Koide, Y.; Ishii, F.; Haneda, I.; Chihara, S.; Koyama, Y. *J. Antibiotics* **1976**, *29*, 765–768.

⁽²⁾ Fukushima, K.; Arai, T. *Mass Spectrosc.* **1979**, 27, 97–105. (3) Tanaka, N.; Okabe, T.; Isono, F.; Kashowagi, M.; Nomoto, K.;

⁽³⁾ Tanaka, N.; Okabe, T.; Isono, F.; Kashowagi, M.; Nomoto, K.; Takahashi, M.; Shimazu, A.; Nishimura, T. *J. Antibiot.* **1985**, *38*, 1327–1332.

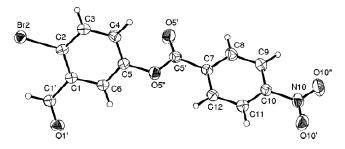
⁽⁴⁾ Okabe, T.; Nomoto, K.; Funabashi, H.; Okuda, S.; Suzuki, H.; Tanaka, N. J. Antibiot. 1985, 38, 1333–1336.

⁽⁵⁾ Hoeksema, H.; Krueger, W. C. J. Antibiot. 1976, 29, 704-709.

⁽⁶⁾ Hopwood, D. A.; Malpartida, F.; Kieser, H. M.; Ikeda, H.; Duncan, J.; Rudd, B. A. M.; Floss, H. G.; Omura, S. *Nature* **1985**, *314*, 642–645. (7) Omura, S.; Ikeda, H.; Malpartida, F.; Kieser, H. M.; Hopwood, D. *Antimicrob. Chemother. Agents* **1986**, *29*, 13–19.

⁽⁸⁾ Tatsuta, K.; Ozeki, H.; Yamaguchi, M.; Tanaka, M.; Okui, T. *Tetrahedron Lett.* **1990**, *31*, 5495–5498.

⁽⁹⁾ Tatsuta, K.; Ozuki, H.; Yamaguchi, M.; Tanaka, M.; Okui, T.; Nakata, M. *J. Antibiot.* **1991**, *44*, 901–902.


lactoquinomycin A, 1,3,10 extensive efforts were subsequently made to achieve an efficient and flexible method for C-glycosylation at the C-8 position of naphthoquinones. $^{11-15}$

In all of the above work, the C-linkage of the carbohydrate was believed to occur at C-8 of the naphthoquinone but for reasons explained below we propose this linkage to occur at C-6, with 2 being the correct structure (Figure 1).

Figure 1. Original (1) and revised (2) structures for medermycin/lactoquinomycin A.

The total syntheses of medermycin/lactoquinomycin A^8 and of its (—)-enantiomer⁹ both started from the bromination product of m-hydroxybenzaldehyde; this compound, given structure $\mathbf{3}$, 16,17 was used to prepare a key intermediate for the establishment at C-8 of a C-C bond between the aromatic system and a precursor of angolosamine. 8,9,18

When performing bromination of m-hydroxybenzaldehyde (HBr, AcOH), 16,17 we isolated a monobrominated product (mp 130 °C [lit. 17 mp 129 °C]). To unambiguously assign its structure, it was reacted with p-nitrobenzoyl chloride, which afforded a single product that was crystallized. Its X-ray analysis (Figure 2) established structure 5, the bromine atom being hence *ortho* to the aldehyde group; 19 that 4 (and not 3) was the correct structure of the bromination product

Figure 2. Ortep drawing of 2-bromo-5-*p*-nitrobenzoylbenzaldehyde **5**.

was also recently found by Paixao's group.²⁰ It is noteworthy that when this bromination is carried out in chloroform, a compound whose melting point is also 130 °C, but to which structure **4** has been assigned,²¹ is obtained. Thus, it is now clear that whether performed in acetic acid or chloroform, bromination of m-hydroxybenzaldehyde gives **4**.²²

For the actual synthesis of medermycin/lactoquinomycin A, metalation of the bromo derivative 6 (thought to be derived from 3) was used as a crucial step.8 To rule out a possible rearrangement during or after bromine/lithium exchange, 23 we prepared the acetal 68 and performed its lithiation under literature conditions;8 this lithio derivative was quenched with methyl iodide, followed by acetal cleavage, which afforded a methylated aldehyde (Scheme 1). In view of the observed coupling constants ($J_{\text{ortho}} = 8.1$ Hz, $J_{\text{meta}} = 1.6 \text{ Hz}$) the structure of this aldehyde can be depicted by either 7 or 8; although these two aldehydes are known compounds,²⁴ their physical (melting point, boiling point, and NMR) data are too similar to allow an unambiguous choice. So the aldehyde was reduced (NaBH₄, CH₃OH) and the alcohol esterified²⁵ to yield 9.26 Upon selective irradiations of methyl or methylene groups, Overhauser enhancements could be observed, which are in accordance

2712 Org. Lett., Vol. 4, No. 16, 2002

⁽¹⁰⁾ Nakagawa, A.; Fukamachi, N.; Yamaki, K.; Hayashi, M.; Oh-Ishi, S.; Kobayashi, B.; Omura, S. J. Antibiot. 1987, 40, 1075–1076.

⁽¹¹⁾ Brimble, M. A.; Duncalf, L. J.; Neville, D. J. Chem. Soc., Perkin Trans. 1 1999, 4165–4173.

⁽¹²⁾ Brimble. M. A.; Issa, F. Aust. J. Chem. 1999, 52, 1021-1028.

⁽¹³⁾ Brimble. M. A.; Brenstrum, T. J. Tetrahedron Lett. 2000, 41, 2991– 2994.

⁽¹⁴⁾ Brimble, M. A.; Brenstrum, T. J. J. Chem. Soc., Perkin Trans. 1 **2001**, 1612–1623.

⁽¹⁵⁾ Brimble, M. A.; Brenstrum, T. J. J. Chem. Soc., Perkin Trans. 1 **2001**, 1624–1634.

⁽¹⁶⁾ Hodgson, H. H.; Beard, H. G. J. Chem. Soc. 1925, 127, 875-881.

⁽¹⁷⁾ Pandya, K. C.; Pandya, R. B. K.; Singh, R. N. J. Indian Chem. Soc. 1952, 29, 363-367.

⁽¹⁸⁾ Attention is called (Barkfnecht, C. F.; Nichols, D. E. *J. Med. Chem.* **1971**, *14*, 370–372) to the report of Pandya et al. (ref 17) where the bromination product is 2-bromo-5-hydroxybenzaldehyde, but this observation has apparently remained unnoticed.

⁽¹⁹⁾ The single-crystal growth of **5** was performed in a mixture of diethyl ether and dichloromethane at about 4–5 °C. The diffraction experiment was carried out at room temperature with an Enraf-Nonius CAD4 diffractometer operating with Cu K α radiation (1.54178 Å) monochromated by a graphite plate. Compound **5** is triclinic P_1^{-} with the following unit-cell dimensions: a=7.407(6) Å, b=7.631(2) Å, c=13.123(6) Å, $a=91.66-(3)^\circ$, $b=99.26(6)^\circ$, $g=64.80(5)^\circ$ with Z=2 and V=661.8(6). $r_{\rm calc}=1.757$ g cm⁻³ and m=4.467 mm⁻¹. A prismatic crystal with the dimensions $0.18\times0.15\times0.10$ mm³ was used for the diffraction data collection. Within a range of 1 to 75° (Θ) 2817 reflections were scanned; among them 2703 were independent and 2373 with $I>1.1\sigma(I)$ were used in the final refinements. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included but not refined. The final results are R=0.066, Rw=0.1076, and GOF=1.985.

⁽²⁰⁾ Matos Beja, A.; Paixao, J. A.; Ramos Silva, M.; Alte da Veiga, L.; d'A Rocha Gonsalves, A. M.; Serra, A. C. *Acta Crystallogr.* **2000**, *C56*, 354–355

⁽²¹⁾ Harmata, M.; Kahraman, M. J. Org. Chem. 1999, 64, 4949–4952. (22) 3 and 4 have been stated to differ in the ¹H NMR chemical shift of their aldehydic proton (Brink, M. Acta University Lund 1968, 36, 3–12), but no indication on the conditions of obtaining 3 was given. From our own NMR observations, 3, which we have prepared by MnO₂ oxidation of the known (Canceill, J.; Collet, A. New J. Chem. 1986, 10, 17–23) benzylic alcohol, could be a minor component of the bromination mixture.

⁽²³⁾ Migration of bromine from position -2 to -4 (under acidic conditions, however) in the structurally related 2-bromo-5-hydroxybenzoic acid has been observed; see: Tomita, M.; Kura, S.; Tanaka, S. *J. Pharm. Soc. Jpn.* **1956**, *76*, 1119–1122.

Scheme 1a СНО CHO НΟ Вr 3 CH(OCH₃)₂ GH(OCH₃)₂ 7 or 8 (see text) 6 CHO CHO

^a (a) refs. 16,17. (b) HBr, AcOH or ref. 21. (c) ref. 8. (d) CH₃I, K₂CO₃ (95 %). (e) CH(OCH₃)₃, H⁺ (92 %). (f) n. -BuLi, -70°C, 15 min then CH₃I (10 equiv.) -70°C to r.t. (g) HCI 0.5 N THF-H₂O, 3 h (67 % from 6).

CH₃O

only with the spin pattern displayed in structure 9 (Figure 3); the same correlations could be equally detected in NOESY experiments, which unambiguously point out structure 9 and demonstrate that no rearrangement occurs during lithiation of the bromide 6. Therefore the structure of medermycin/lactoquinomycin A can now be safely revised

However, one may ask why structure 1 had been chosen, i.e. why the point of attachment of the C-glycoside was selected as C-8?

(24) Compound 7: Higginbottom A.; Hill, P.; Short, W. F. J. Chem. Soc. 1937, 263-266. Hartmann, R. W.; Heindl, A.; Schwarz, W.; Schoenenberger, H. J. Med. Chem. 1984, 27, 819-824. Ranchella, M.; Rol, C.; Sebastiani, G. V. J. Chem. Soc., Perkin Trans. 2 2000, 311-316. Compound 8: Fukumi, H.; Kurihara, H.; Mishima, H. Chem. Pharm. Bull. 1978, 26, 2175-2180. Kametani, T.; Kigawa, Y.; Nemoto, H.; Ihara, M.; Fukumoto, K. J. Chem. Soc., Perkin Trans. 1 1980, 1607-1611. Flitsch, W.; Russkamp, P.; Langer, W. Liebigs Ann. Chem. 1985, 1413-1421. Flippin, L. A.; Berger, J.; Parnes, J. S.; Gudiksen, M. S. J. Org. Chem. 1996, 61, 4812-4815.

(25) We felt it would be wise to get rid of the exchangeable proton to avoid potential interference during NMR-nOe experiments.

(26) Compound 9 (assignments secured by homo- and heteronuclear correlation spectroscopies): ¹H NMR (300 MHz, CDCl₃) δ 2.35 (s, 3H, Ar-CH₃); 3.8 (s, 3H, OCH₃); 5.4 (s, 2H, CH₂); 6.8 (dd, J = 8.4, 2.7 Hz, 1H, H-3); 7.0 (d, J = 2.7 Hz, 1H, H-4); 7.2 (d, J = 8.4 Hz, 1H, H-6); 8.2 and 8.3 (AA'XX' system, 4H, H-2', -3', -5', -6'). ¹³C NMR (75 MHz, CDCl₃) δ 18.0 (Ar–CH₃₎; 55.4 (OCH₃); 66.0 (CH₂); 113.7 (C-3); 115.3 (C-4); 123.5 (C-3',-5'); 128.8 (C-2); 130.8 (C-2',-6'); 131.4 (C-6); 134.2 (C-1); 135.4 (C-1'); 150.5 (C-4'); 157.9 (C-5); 164.5 (C=O).

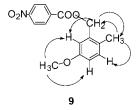


Figure 3. Homonuclear Overhauser enhancements observed upon irradiations of selected protons for compound 9.

Although a number of NMR chemical shift predictions or experimental data based on naphthoquinones substitution patterns²⁷ could have been of help, they were not available at the time when the structure was selected; the choice of 1 appears to have relied on NMR correlations: to quote the author's words "a long-range coupling between the 2'-H signal and phenolic carbon signal (C-9) was observed, indicating that the C-8 position is substituted by the sugar moiety". 4,28 It looks like only ³J heteronuclear correlations were considered while ruling out ${}^{n}J$ (n > 3) correlations. However, we have detected a ${}^{5}J$ heteronuclear correlation in compound 9, which is unambiguous since we have fully assigned its ¹³C and ¹H NMR spectra, ²⁶ and we could also observe it on a simpler model: p-cresol (Figure 4). Thus

9:
$$R = COC_6H_4NO_2$$

OH

OH

H

H

H

H

H

H

Para-cresol

Figure 4. Observed long-range heteronuclear correlations.

the detection of a ⁵J heteronuclear correlation between the glycosidic proton and C-9 in medermycin/lactoquinomycin A is compatible with structure 2.

As a consequence of this work, the structures of lactoquinomycin B,²⁹ menoxymycins A and B,³⁰ G15-F, and G15-G,31 which were directly built on that of 1, should also be revised (Figure 5); in addition we suggest that those of

Org. Lett., Vol. 4, No. 16, 2002 2713

⁽²⁷⁾ Lillie, T. J.; Musgrave, O. C. J. Chem. Soc. 1977, 355-359. Mc-Donald, I. A.; Simpson, T. J.; Sierakowski, A. F. Aust. J. Chem. 1977, 30, 1727-1734. Neidlein, R.; Kramer, W.; Leidholt, R. Helv. Chim. Acta 1983, 66, 2285-2293. Inoue, K.; Ueda, S.; Nayeshiro, H.; Inouiye, H. Phytochemistry 1983, 22, 737-741. Tabatskaya, A. A.; Vlasov, V. M. Zh. Org. Khim. 1991, 27, 1285-1297 (English translation: J. Org. Chem. USSR 1991, 27, 1121-1131). Ismail, N. H.; Ali, A. M.; Aimi, N.; Kitajima, M.; Takayama, H.; Lajis, N. H. *Phytochemistry* **1997**, *45*, 1723–1725. (28) In the numbering used in ref 4, H-2' is the glycosidic proton.

⁽²⁹⁾ Okabe, T.; Nomoto, K.; Tanaka, N. J. Antibiot. 1986, 39, 1-6 (30) Hayakawa, Y.; Ishigami, K.; Shin-Ya, K.; Seto, H. J. Antibiot. 1994, *47*, 1344-1347.

⁽³¹⁾ Li, P.; Lou, Z.; Hu, J.; Li, Y. Chin. J. Antibiot. 1995, 20, 254-260.

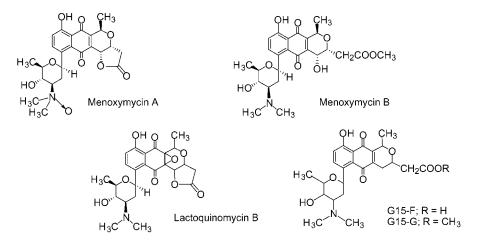


Figure 5. Revised structures for medermycin-derived antibiotics.

mederrhodins A and B⁷ and of AM-8402³² be looked at again. Finally we wish to emphasize that even though synthetic efforts to achieve efficient introduction of a *C*-glycoside at C-8 could now appear irrelevant (since the structure of medermycin on which they were based was wrong), there are still a number of (naphtho)quinone antibiotics, such as quanolirones, capomycins, urdamycins, amicenomycins, and saquayamicins, in which a *C*-glycoside is linked *ortho* to a phenolic group, thus justifying ongoing research.³³ And last, but not least, may we point out that whenever delocalized aromatic systems are involved, par-

ticular care should be taken when using long-range correlations for the establishment of NMR connectivities.

Acknowledgment. Béatrice Gennaro is thanked for recording the nuclear Overhauser experiments and C.M. is grateful to a CNRS-JSPS exchange program for a travel/stay grant in Prof. S. Omura's group (Kitasato Institute, May—August 1986) from which his interest in bioactive quinonoïds can be traced.

Supporting Information Available: Procedures for the preparation of **3** and **4** and related analytical data; GHMBC correlations and assignments of *p*-cresol and crystallographic data of **5**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL026222E

2714 Org. Lett., Vol. 4, No. 16, 2002

⁽³²⁾ Omura, S.; Murata, M.; Kimura, K.; Matsukura, S.; Nishihara, T.; Tanaka, H. J. Antibiot. **1985**, *38*, 1016–1024.

⁽³³⁾ For a recent example, see: Hauser, F. M.; Hu, X. *Org. Lett.* **2002**, 4, 977–978.